„ |
… Ilyen, hogy »négyzetgyök minusz egy«, nem létezhet…. Csak éppen az az érthetetlen, hogy mégis számolhatunk imaginárius vagy más ilyen képtelen értékekkel és végül mindennek ellenére reális értéket kapunk eredményül…Hát nem olyan ez, mint egy híd, amelynek csak első és utolsó pillére van, a pillérek között pedig semmi, és te mégis olyan biztonsággal mégy át rajta, mintha nem kellene a folyóba esned? Én mindenképp csalást szimatolok az ilyen számításban, ahol csak hipp-hopp, ott legyek, ahol akarok… És a legkísértetiesebb számomra a matematikának ez az ereje, amely csakugyan átvisz minket a nem létező hídon, anélkül, hogy lezuhannánk róla. |
” |
– Robert Musil: Törless iskolaévei, Európa Könyvkiadó, 1980, 101. lap |
"Eredményünk szükségképpen az lesz, hogy az összes gyök valós, annak ellenére, hogy ehhez az eredményhez a komplex számokon keresztül jutottunk. A polinom tehát fölbontható (reducibilis), de a fölbontás elvégzéséhez nem elegendőek a valós műveletek."